

ERDC MSRC PET Technical Report No. 01-26

Comparison of Multiblock Grid and
Domain Decomposition in Coastal Ocean

Circulation Modeling

by

Phu Luong
Clay P. Breshears

Le N. Ly

15 May 2001

Work funded by the Department of Defense
High Performance Computing Modernization Program
U.S. Army Engineer Research and Development Center
Major Shared Resource Center through

Programming Environment and Training

Supported by Contract Number: DAHC94-96-C0002
Computer Sciences Corporation

Views, opinions and/or findings contained in this report are those of the author(s) and
should not be construed as an official Department of Defense position, policy, or decision
unless so designated by other official documentation.

Comparison of Multiblock Grid and Domain Decomposition

in

Coastal Ocean Circulation Modeling

Phu Luong
Engineer Research and Development Center

Major Shared Resource Center

Vicksburg, MS 39180

phu@nrcmail.wes.hpc.mil

fax: 601-634-3808

and

Clay P. Breshears
KAI Software

A Division of Intel Americas, Inc.

clay.breshears@intel.com

fax: 217-356-5199

and

Le N. Ly
Department of Oceanography

Naval Postgraduate School

Monterey, CA 93943

lely@hydro.oc.nps.navy.mil

fax:831-656-2712

1

Abstract

In coastal ocean modeling, the traditional one-block rectangular grid has

large memory requirements and long processing times. For a large ocean

domain with complicated coastlines, the number of grid points used in the

calculation is often the same or even smaller than the number of unused

grid points. These problems have long been a big concern in coastal ocean

modeling.

To eliminate these problems, many techniques have been introduced over

the years. Among these techniques, domain decomposition, nesting, and

multiblock grids are the most frequently used. The Multiblock Grid Prince-

ton Ocean Model (MGPOM) uses the Message Passing Interface (MPI) to

parallelize computations by assigning each grid block used to a unique pro-

cessor. MGPOM is not dependent upon the method of grid-generation and is

an ideal tool to measure performance di�erences between gridding method-

ologies.

The main focus of this study is a comparison of the grid-generation tech-

nique and domain decomposition in terms of load balance and overall perfor-

mance. The data set used for this comparison will be a 90-day simulation for

the U.S. west coast under two 29-block grids, one grid generated by domain

decomposition and the other by the multiblock technique.

Keywords: Multiblock Grid Princeton Ocean Model, U.S. west coast simu-

lation, coastal ocean circulation model.

2

1 Introduction

Over the years, the traditional one-block rectangular grid has been

used for ocean circulation modeling. This technology encounters dif-

�culty on computational grids with high resolution because of the

large memory and computing requirements. For a large body of wa-

ter, such as an ocean with complicated coastlines, the number of grid

points used in the calculation (water points) is often the same or even

smaller than the number of unused grid points (land points).

Domain decomposition can be used to partition the traditional one-

block grid into subdomains that reduce the unused grid points, and

Message Passing Interface (MPI) [1] can be used to parallelize this

type of of computation [2]. Domain decomposition often requires a

preprocessing step to determine the most e�cient work distribution

for the subdomains in order to avoid severe load imbalances. More-

over, in this technique, each domain is allowed to communicate with

only one adjacent neighbor subdomain at the interface between the

two. This limitation a�ects the ability to eliminate the land-grid

points along a complicated ocean coastline. Along complicated coast-

lines, subdomains may be composed mostly of land-grid points that

can cause load balance inequities, without special treatment in the

preprocessing step. One-block grid data arrays, often considered as

global arrays, are decomposed into the local array structures for each

3

subdomain. Bookkeeping of global and local array indices is required

for communication between MPI processes. This preprocessing step

is sometimes very time-consuming for many ocean circulation models

and hydrodynamics models.

Another approach, known as multiblock grid-generation, can be

used to reduce the unused grid points and to improve the performance

of the model as well. This methodology allows the elimination of

blocks composed mainly of land-grid points and the choice of the grid

with minimum land-grid points along the coastline. In addition, high

horizontal grid resolution in an area of interest can be handled easily.

MPI is used for parallelization of the ocean model by assigning each

grid block to a unique processor. Workload (number of used grid

points) for each block can be determined during the grid-generation

process to achieve a more even load balance. Another advantage of

the multiblock grid over the domain decomposition is that each MPI

process can communicate with more than one adjacent neighbor grid

block at the interfaces.

In this study, the MPI parallel code version of the Multiblock Grid

Princeton Ocean Model (MGPOM) [3] is used for simulation of the

U.S. west coast. Pthreads is also used as second-level parallelism

within one routine of the code to improve load imbalance between MPI

processes. A brief description of 29-block grids generated by domain

decomposition and by the grid-generation technique is presented in

4

Section 2. Models, as well as data, used for simulation in this study

are presented in Section 3. The Pthreads implementaion in the routine

PROFQ of the MGPOM code is described in Section 4. Performance

results of the parallel codes (MPI-Only and MPI-Pthreads) on the two

computational model grids are discussed in Section 5. Conclusions

from this study are presented in Section 6.

2 Grids Used

The physical geographic area for this study extends from 116 West

to 135 West in longitude and from 30 North to 49 North in latitude

(Figure 1). The 4-min resolution grid for this area yields a total

number of grid points for a one-block rectangular grid (01BLK) of

81,796 (286�286). The number of used and unused grid points is

56,146 and 25,650, respectively. More than 31 percent of the total

grid is unused (Figure 2).

A simple routine is developed for reading in the 01BLK grid and

evenly decomposing the grid into equal subdomains. Partitioning the

01BLK grid by six equal amounts along the x-direction and six along

the y-direction yields 36 subdomains. Since MGPOM uses four grid

line overlaps in each direction for each subdomain, the dimensions

for each subdomain are 51�51 (2,601 total grid points). Under this

particular partition, 21 subdomains are composed of only water-grid

5

Figure 1: The U.S. west coast coastline

6

Figure 2: Used and unused grid points

7

points; 8 subdomains are composed of water-grid and land-grid points;

and 7 subdomains are composed of only land-grid points. The 7 sub-

domain grids with only land-grid points will be neglected in the com-

putations, and the other 29 subdomain grids (referred to as 29DDG)

will be used (Figure 3). The total number of unused grid points for

this 29DDG grid is 11,015 as compared with 25,650 of the 01BLK

grid. The smallest number of used grid points is 129 within this de-

composition; this can lead to a severe load imbalance (Figure 4).

As mentioned earlier, the multiblock grid-generation technique has

an advantage of selecting grid blocks with minimum land-grid points

along the coastline. This is done through the use of the EAGLEView

interactive software package [4]. The procedure for generating the 29-

block grid (Figure 5) in this technique is given below. This 29-block

grid shall be referred to as 29MBG.

First, one uses the Input/Output (I/O) module of EAGLEView to

load in the 01BLK grid data and the U.S. west coast coastline data.

The unused grid points are then extracted from the 01BLK grid by

using the Extract module. The Extract module is then able to extract

the remaining part (used grid points) from the domain. This same

module is used for decomposing the used grid portion into 18 equal

small grid blocks. This yields each grid block with dimensions 47�51

(2,397 total grid points).

Second, the Extract module is used again for generating small grid

8

Figure 3: Coastline on the 29DDG grid

blocks along the coastline of the remaining part of the domain. This

module allows users to select grid blocks along the coastline such that

each grid block contains a minimum number of unused grid points.

The List module is then used for checking the dimensions as well

as the number of used grid points in each small grid block. Since

MGPOM is a multiblock grid code, it allows multiple communication

at the interface of each grid block. This property makes it easier to

9

Figure 4: Workload for the 29DDG grid

choose the orientation of the block grid along the coastline so that

the number of unused grid points in each block is minimized. The

smallest number of used grid points in this technique is 1,263, and

this increase results in an improved workload distribution (Figure 6)

compared with the 29DDG grid. The number of unused grid points

for this 29BLK grid is only 4,007 as compared with 11,015 of the

29DDG grid.

3 The U.S. West Coast Simulation

MGPOM is a three-dimensional (3-D), primitive equations, time de-

pendent, � coordinates, and free-surface coastal ocean circulation

10

Figure 5: Coastline on the 29MBG grid

11

Figure 6: Workload for the 29MBG grid

model. The primitive equations in this model describe the veloc-

ity, surface elevation, salinity and temperature �elds of the ocean.

The ocean is assumed to be hydrostatic and incompressible. The

model uses curvilinear orthogonal coordinates in the horizontal for

the computational model grid. � coordinates is used for the verti-

cal direction from surface to the sea
oor in which the coordinate is

scaled on the water column depth. The model is embedded with a

second moment turbulence closure submodel [5] to provide vertical

mixing coe�cients. The model has a free-surface and a split time-

step. The external (barotropic) mode portion of the model is 2-D

and uses the explicit numerical scheme for the time di�erencing. The

12

internal (baroclinic) mode is 3-D, and the vertical di�erencing is im-

plicit. The latter condition eliminates time constraints for the vertical

coordinate and permits the use of �ne vertical grid resolution in the

surface and the bottom boundary layers. More details of the model

can also be found in [5].

Data for the U.S. west coast simulation were obtained from the

Naval Oceanographic O�ce (NAVOCEANO) database. Bathymetry

for the 01BLK, 29DDG, and 29MBG grids were computed by interpo-

lation from the 2-min resolution bathymetry database. Initial temper-

ature and salinity for these grids were also obtained by interpolation

from the 10-min resolution temperature and salinity Generalized Dig-

ital Environmental Model (GDEM) database.

The U.S. west coast computational domain has three open bound-

aries. At these boundaries, the internal normal velocities are governed

by a Sommerfeld radiation condition. The open-boundary condition

for the surface elevation is zero gradient normal to the boundary.

Temperature, salinity, and tangential velocities are upwinded at the

open boundaries. The model is spun up for 30 days (diagnostic mode)

in which the density distribution at all points on the computational

grids is held �xed in time. The time-step scales used in this simula-

tion are 40 sec for the external (barotropic) mode and 240 sec for the

internal (baroclinic) mode. The time-step scale for the external mode

is based on the CFL (Courant, Friedrichs and Lewy) condition and

13

the external wave speed, while the internal mode is based on the CFL

condition and the internal wave speed.

After 30 days of diagnostic mode, the model is then run for 60 days.

Numerical solutions after this 90-day simulation for the 01BLK grid,

29DDG grid, and the 29MBG grid yield identical results. Results of

surface current computations between the 01BLK grid (Figure 7) and

29MBG grid (Figure 8) after the 90-day simulation were compared.

These were found to be identical to each other. Numerical solutions

for the surface temperature on the 01BLK grid (Figure 9) and the

29MBG grid (Figure 10) are also identical.

The serial version of MGPOM code for a 10-day simulation has an

execution time of 67,000 sec on a single IBM SP processor. A parallel

version of MGPOM uses MPI asynchronous sends and receives to

exchange data between adjacent blocks at the interfaces. OpenMP [6]

has been used as a second level of parallelization within each MPI

process in a separate simulation of the Arabian Gulf [7]. In the current

study, Pthreads is used as the second level of parallelism within each

MPI process.

4 Pthreads Implementation

Pthreads is the library of POSIX standard functions for concurrent,

multithreaded programming. The POSIX standard only de�nes an

14

Figure 7: Surface current on the 01BLK grid

application programming interface (API) to the C programming lan-

guage, not to Fortran. The FPTHRD package [8] consists of a Fortran

module and �le of C functions. The module de�nes Fortran derived

types, parameters, interfaces, and routines to provide Fortran pro-

grammers the capabilities of the Pthread API. The C functions pro-

vide the interface from Fortran subroutine calls and map parameters

into corresponding POSIX routines and function arguments.

The structure of the MGPOM code contains one major loop within

15

Figure 8: Surface current on the 29MBG grid

the main program. This loop iterates over the time-step of the execu-

tion simulation. Within this loop are several subroutine calls (four of

these are for MPI communication, while the others perform computa-

tion). The computation subroutines are composed of multiple doubly

and triply nested loops operating on 2- and 3-D arrays. Pro�ling the

parallel MGPOM code revealed several routines that accounted for

more than half of the wall-clock execution time in each processor.

The top one among those routines is PROFQ, which takes nearly 20

16

Figure 9: Surface temperature on the 01BLK grid

17

Figure 10: Surface temperature on the 29MBG grid

18

percent of the total execution time. This routine was the obvious �rst

choice for threading.

Within each MPI process, based on the size of the block grid, a 2-D

decomposition of the �rst two indices of the block into subblocks is

then computed: one subblock is created per thread. The exact decom-

position depends upon the number of threads assigned to the block

and the relative lengths of the sides of the block. A decomposition

that would yield the \squarest" subblocks is the ultimate goal. The

index boundaries of the subblocks within the block grid are saved into

a shared array and are used by each thread as loop iteration bounds

within the PROFQ routine. After the block grid is decomposed into

subblocks, the main routine is modi�ed so that threads are created

at run time according to the number of subblocks to be used within

PROFQ.

5 Parallel Performance

While MGPOM processes use asynchronous communication, the pro-

cesses must synchronize to some degree; e.g., processes with a small

number of used grid points within assigned blocks are forced to wait

on the actual receipt of data from processes with large blocks that

have been performing more calculations prior to communication. The

greater the di�erence in size between adjacent blocks, the larger the

19

load imbalance of computation will be. In order to quantify the de-

gree of load imbalance within a given code segment, idle overhead

is de�ned as the ratio of total execution time to maximum possible

execution time expressed as a percentage:

idle overhead = 100%�

0
@1: �

P
N

i=1 ti

N � tmax

1
A (1)

whereN is the number of MPI processes, ti is execution time of process

i, and tmax is the largest time ti.

All results presented herein in terms of idle overhead and cumulative

time are for the PROFQ routine on the 29DDG and 29MBG grids.

The cumulative timing results of PROFQ for the MPI-Only code

version for a run of 10 simulated days on the 29DDG grid (Figure 11)

show an idle overhead of 13 percent. The total wall-clock execution

time of this run was 2,622 sec, a 26 times speedup, as compared to

the 01BLK grid serial time, when run on 29 IBM SP processors. Idle

overhead is 8 percent for the 29MBG grid (Figure 12) within the

PROFQ routine. The total wall-clock execution time of this run was

2,018 sec and a 33 times speedup was achieved for this grid.

The cumulative timing results of PROFQ for the MPI-Pthreads

code version (Figure 13) yields 7 percent of idle overhead time for

the 29DDG grid. This run was performed on 29 IMB SP SMP nodes

20

Figure 11: PROFQ:(MPI-Only) cumulative execution time in seconds

Figure 12: PROFQ:(MPI-Only) cumulative execution time in seconds

21

Figure 13: PROFQ:(MPI-Pthreads) cumulative execution time in seconds

(each with four processors) using a maximum of two threads per pro-

cess (58 processors) based on assigned workload. The total wall-clock

execution time of this run was 1,720 sec, a 39 times speedup over the

one-block version. Only 4 percent of idle overhead time was com-

mitted within the PROFQ routine (Figure 14) for the MPI-Pthreads

code version on the 29MBG grid. The total wall-clock execution time

of this run was 1,625 (also run on 29 IBM SP four-processor nodes),

a 41 times speedup over the serial version.

22

Figure 14: PROFQ:(MPI-Pthreads) cumulative execution time in seconds

6 Conclusions

The timing results show a signi�cant improvement in the execution

time as well as in the load imbalance produced by MPI-Only exe-

cution. Through use of the hand-coded, dynamic threading within

Pthreads, load imbalance between the MPI processes of the two grids

can be improved. The performance results achieved were the results of

threading a single MGPOM routine. Other candidate routines within

the code are still available.

23

Acknowledgment

This work was funded by the DoD High Performance Computing Mod-

ernization Program U.S. Army Engineer Research and Development

Center (ERDC) Major Shared Resource Center through Programming

Environment and Training (PET), supported by Contract Number:

DAHC 94-96-C0002, Computer Sciences Corporation.

References

[1] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra,
J., MPI|The Complete Reference: Volume 1, the MPI Core, MIT
Press, Cambridge, 1998.

[2] Oberpriller, W. D., Sawdey, A. C., O'Keefe, M. T., and Gao,
S., \Paralleling the Princeton Ocean Model using TOPAZ,"
http://topaz.lcse.umn.edu.

[3] Luong, P. V., Breshears, C. P., and Ly, L. N., \Application of Multi-
block Grid and Dual-Level Parallelism in Coastal Ocean Circulation
Modeling," Journal of Applied Mathematical Modeling, In Review.

[4] Stokes, M., Jiang, M., and Remotique, M., \EAGLEview Grid Ger-
ation Package," EAGLEView Version 2.4 Manual. Missisippi State
University/National Science Foundation Engineering Research Cen-
ter for Computational Field Simulation, December 1992.

[5] Blumberg, A. F., and Mellor, G. L., \A Description of a
Three-Dimensional Coastal Ocean Circulation Model." In Three-

Dimensional Coastal Models, Coastal and Estuaries Sciences. Heaps,
N. S., editor, AGU Geophysical Monograph Board, 1987, 1.

24

[6] OpenMP Architecture Review Board, \OpenMP Fortran Applica-
tion Program Interface, Version 1.0," http://www.openmp.org, Oc-
tober 1997.

[7] Luong, P. V., Breshears, C. P., and Ly, L. N., \Dual-Level Paral-
lelism and Multiblock Grids in Coastal Ocean Circulation Model-
ing," Technical Report ERDC MSRC/PET, TR/00-08, Feb. 2000.

[8] Hanson, R. J., Breshears, C. P., and Gabb, H. A., \A Fortran In-
terface to POSIX Threads," Technical Report ERDC MSRC/PET,
TR/00-18, Feb. 2000.

25

